3.2.99 \(\int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x)) \, dx\) [199]

Optimal. Leaf size=63 \[ -\frac {2 a (e \cos (c+d x))^{3/2}}{3 d e}+\frac {2 a \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)}} \]

[Out]

-2/3*a*(e*cos(d*x+c))^(3/2)/d/e+2*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*
c),2^(1/2))*(e*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {2748, 2721, 2719} \begin {gather*} \frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {2 a (e \cos (c+d x))^{3/2}}{3 d e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x]),x]

[Out]

(-2*a*(e*Cos[c + d*x])^(3/2))/(3*d*e) + (2*a*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d
*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2748

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-b)*((g*Co
s[e + f*x])^(p + 1)/(f*g*(p + 1))), x] + Dist[a, Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x
] && (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])

Rubi steps

\begin {align*} \int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x)) \, dx &=-\frac {2 a (e \cos (c+d x))^{3/2}}{3 d e}+a \int \sqrt {e \cos (c+d x)} \, dx\\ &=-\frac {2 a (e \cos (c+d x))^{3/2}}{3 d e}+\frac {\left (a \sqrt {e \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{\sqrt {\cos (c+d x)}}\\ &=-\frac {2 a (e \cos (c+d x))^{3/2}}{3 d e}+\frac {2 a \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.63, size = 260, normalized size = 4.13 \begin {gather*} \frac {a \sqrt {e \cos (c+d x)} \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) (\cos (d x)+i \sin (d x)) \left (-6 \cos (d x)-6 \cos (2 c+d x)-2 \sin (c)+6 \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i d x} (\cos (c)+i \sin (c))^2\right ) (\cos (d x)-i \sin (d x)) \sqrt {1+\cos (2 (c+d x))+i \sin (2 (c+d x))}+2 \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i d x} (\cos (c)+i \sin (c))^2\right ) (\cos (d x)+i \sin (d x)) \sqrt {1+\cos (2 (c+d x))+i \sin (2 (c+d x))}+\sin (c+2 d x)-\sin (3 c+2 d x)\right )}{6 d \left (\left (1+e^{2 i d x}\right ) \cos (c)+i \left (-1+e^{2 i d x}\right ) \sin (c)\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x]),x]

[Out]

(a*Sqrt[e*Cos[c + d*x]]*Csc[c/2]*Sec[c/2]*(Cos[d*x] + I*Sin[d*x])*(-6*Cos[d*x] - 6*Cos[2*c + d*x] - 2*Sin[c] +
 6*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*(Cos[d*x] - I*Sin[d*x])*Sqrt[1 +
Cos[2*(c + d*x)] + I*Sin[2*(c + d*x)]] + 2*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c]
)^2)]*(Cos[d*x] + I*Sin[d*x])*Sqrt[1 + Cos[2*(c + d*x)] + I*Sin[2*(c + d*x)]] + Sin[c + 2*d*x] - Sin[3*c + 2*d
*x]))/(6*d*((1 + E^((2*I)*d*x))*Cos[c] + I*(-1 + E^((2*I)*d*x))*Sin[c]))

________________________________________________________________________________________

Maple [A]
time = 1.89, size = 120, normalized size = 1.90

method result size
default \(\frac {2 a e \left (-4 \left (\sin ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+4 \left (\sin ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +e}\, d}\) \(120\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(d*x+c))*(e*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)*a*e*(-4*sin(1/2*d*x+1/2*c)^5+3*(sin(1/2*d*x+1/2*c)^
2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+4*sin(1/2*d*x+1/2*c)^3-sin(1/2
*d*x+1/2*c))/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))*(e*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

e^(1/2)*integrate((a*sin(d*x + c) + a)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.09, size = 77, normalized size = 1.22 \begin {gather*} -\frac {2 \, a \cos \left (d x + c\right )^{\frac {3}{2}} e^{\frac {1}{2}} - 3 i \, \sqrt {2} a e^{\frac {1}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} a e^{\frac {1}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{3 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))*(e*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/3*(2*a*cos(d*x + c)^(3/2)*e^(1/2) - 3*I*sqrt(2)*a*e^(1/2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0,
 cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*a*e^(1/2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos
(d*x + c) - I*sin(d*x + c))))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a \left (\int \sqrt {e \cos {\left (c + d x \right )}}\, dx + \int \sqrt {e \cos {\left (c + d x \right )}} \sin {\left (c + d x \right )}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))*(e*cos(d*x+c))**(1/2),x)

[Out]

a*(Integral(sqrt(e*cos(c + d*x)), x) + Integral(sqrt(e*cos(c + d*x))*sin(c + d*x), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))*(e*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((a*sin(d*x + c) + a)*sqrt(cos(d*x + c))*e^(1/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \sqrt {e\,\cos \left (c+d\,x\right )}\,\left (a+a\,\sin \left (c+d\,x\right )\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(c + d*x))^(1/2)*(a + a*sin(c + d*x)),x)

[Out]

int((e*cos(c + d*x))^(1/2)*(a + a*sin(c + d*x)), x)

________________________________________________________________________________________